Convert Sea Water to Fresh Water, Why we need to - isave filter salt water

Convert Sea Water to Fresh Water, Why we need to - isave filter salt water

Convert Sea Water to Fresh Water, Why we need to - isave filter salt water
Convert Sea Water to Fresh Water, Why we need to - isave filter salt water

 Reverse osmosis (RO) is a water purification process that uses a partially permeable membrane to remove ions, unwanted molecules and larger particles from drinking water. In reverse osmosis, an applied pressure is used to overcome osmotic pressure, a colligative property that is driven by chemical potential differences of the solvent, a thermodynamic parameter. Reverse osmosis can remove many types of dissolved and suspended chemical species as well as biological ones (principally bacteria) from water, and is used in both industrial processes and the production of potable water. The result is that the solute is retained on the pressurized side of the membrane and the pure solvent is allowed to pass to the other side. To be "selective", this membrane should not allow large molecules or ions through the pores (holes), but should allow smaller components of the solution (such as solvent molecules, i.e., water, H2O) to pass freely. 

 In the normal osmosis process, the solvent naturally moves from an area of low solute concentration (high water potential), through a membrane, to an area of high solute concentration (low water potential). The driving force for the movement of the solvent is the reduction in the free energy of the system when the difference in solvent concentration on either side of a membrane is reduced, generating osmotic pressure due to the solvent moving into the more concentrated solution. Applying an external pressure to reverse the natural flow of pure solvent, thus, is reverse osmosis. The process is similar to other membrane technology applications.

Reverse osmosis differs from filtration in that the mechanism of fluid flow is by osmosis across a membrane. The predominant removal mechanism in membrane filtration is straining, or size exclusion, where the pores are 0.01 micrometers or larger, so the process can theoretically achieve perfect efficiency regardless of parameters such as the solution's pressure and concentration. Reverse osmosis instead involves solvent diffusion across a membrane that is either nonporous or uses nanofiltration with pores 0.001 micrometers in size. The predominant removal mechanism is from differences in solubility or diffusivity, and the process is dependent on pressure, solute concentration, and other conditions. Reverse osmosis is most commonly known for its use in drinking water purification from seawater, removing the salt and other effluent materials from the water molecules .
Energy recovery:
 Energy recovery can reduce energy consumption by 50% or more. Much of the high pressure pump input energy can be recovered from the concentrate flow, and the increasing efficiency of energy recovery devices has greatly reduced the energy needs of reverse osmosis desalination. Devices used, in order of invention, are:
Turbine or Pelton wheel: a water turbine driven by the concentrate flow, connected to the high pressure pump drive shaft to provide part of its input power. Positive displacement axial piston motors have also been used in place of turbines on smaller systems.

Turbocharger: a water turbine driven by the concentrate flow, directly connected to a centrifugal pump which boosts the high pressure pump output pressure, reducing the pressure needed from the high pressure pump and thereby its energy input, similar in construction principle to car engine turbochargers.

Pressure exchanger: using the pressurized concentrate flow, in direct contact or via a piston, to pressurize part of the membrane feed flow to near concentrate flow pressure. A boost pump then raises this pressure by typically 3 bar / 50 psi to the membrane feed pressure. This reduces flow needed from the high-pressure pump by an amount equal to the concentrate flow, typically 60%, and thereby its energy input. These are widely used on larger low-energy systems. They are capable of 3 kWh/m3 or less energy consumption.

Energy-recovery pump: a reciprocating piston pump having the pressurized concentrate flow applied to one side of each piston to help drive the membrane feed flow from the opposite side. These are the simplest energy recovery devices to apply, combining the high pressure pump and energy recovery in a single self-regulating unit. These are widely used on smaller low-energy systems. They are capable of 3 kWh/m3 or less energy consumption.

Batch operation: Reverse-osmosis systems run with a fixed volume of fluid (thermodynamically a closed system) do not suffer from wasted energy in the brine stream, as the energy to pressurize a virtually incompressible fluid (water) is negligible. Such systems have the potential to reach second-law efficiencies of 60%.

The world is running out of drinking water. Why? Where is it going and how what are engineers doing to save us? Find out in this video where we look at water shortages in cape town and how reverse osmosis is turning sea water into drinking water.

Related topics:

Post a Comment

Previous Post Next Post