Solenoid Basics Explained - Working Principle

Solenoid Basics Explained - Working Principle

Solenoid Basics Explained - Working Principle
Solenoid Basics Explained - Working Principle

A solenoid  is a type of electromagnet, the purpose of which is to generate a controlled magnetic field through a coil wound into a tightly packed helix. The coil can be arranged to produce a uniform magnetic field in a volume of space when an electric current is passed through it. The term solenoid was coined in 1823 by André-Marie Ampère to designate a helical coil. 

In the study of electromagnetism, a solenoid is a coil whose length is substantially greater than its diameter. The helical coil of a solenoid does not necessarily need to revolve around a straight-line axis; for example, William Sturgeon's electromagnet of 1824 consisted of a solenoid bent into a horseshoe shape.

In engineering, the term may also refer to a variety of transducer devices that convert energy into linear motion. The term is also often used to refer to a solenoid valve, an integrated device containing an electromechanical solenoid which actuates either a pneumatic or hydraulic valve, or a solenoid switch, which is a specific type of relay that internally uses an electromechanical solenoid to operate an electrical switch; for example, an automobile starter solenoid or linear solenoid. Solenoid bolts, a type of electromechanical locking mechanism, also exist. In electromagnetic technology, a solenoid is an actuator assembly with a sliding ferromagnetic plunger inside the coil. Without power, the plunger extends for part of its length outside the coil; applying power pulls the plunger into the coil. Electromagnets with fixed cores are not considered solenoids.
Solenoid basics explained. In this video we take a look at the electromagnetic field of a solenoid coil. Learning how magnets work and how they can be used to control solenoids and solenoid valves.


Related topics:


Post a Comment

Previous Post Next Post