DC Series circuits explained - The basics working principle

# DC Series circuits explained - The basics working principle

 DC Series circuits explained - The basics working principle

Direct current (DC) is the unidirectional flow of an electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams. The electric current flows in a constant direction, distinguishing it from alternating current (AC). A term formerly used for this type of current was galvanic current.
The abbreviations AC and DC are often used to mean simply alternating and direct, as when they modify current or voltage. Direct current may be converted from an alternating current supply by use of a rectifier, which contains electronic elements (usually) or electromechanical elements (historically) that allow current to flow only in one direction. Direct current may be converted into alternating current via an inverter.

Direct current has many uses, from the charging of batteries to large power supplies for electronic systems, motors, and more. Very large quantities of electrical energy provided via direct-current are used in smelting of aluminum and other electrochemical processes. It is also used for some railways, especially in urban areas. High-voltage direct current is used to transmit large amounts of power from remote generation sites or to interconnect alternating current power grids

A series circuit is a circuit in which resistors are arranged in a chain, so the current has only one path to take. The current is the same through each resistor. The total resistance of the circuit is found by simply adding up the resistance values of the individual resistor

Series circuits DC Direct current. In this video we learn how DC series circuits work, looking at voltage, current, resistance, power consumption as well as how to use a multimeter. There's also a problem at the end of the video for you to solve.

Related topics: